基于蓝普锋PLC和物联网技术的水源热泵监控系统
发布时间:2019-03-05
摘要:通过将基于蓝普锋PLC控制的水源热泵机组与室外环境、末端用户集成在物联网上,形成热泵空调机组管理和调度一体化的监控系统,管理人员可以通过PC端和移动终端实时监测热泵机组运行状态、室外环境温度和湿度、末端用户的室内温度和湿度,并依据系统计算分析结果,准确下达系统优化运行的控制指令,以满足舒适性需求并达到节能的目的。现场项目运行结果表明,采用基于蓝普锋PLC和物联网技术的水源热泵监控系统,能够在保证用户室内环境舒适的前提下,稳定可靠运行且显著降低系统的能耗。
行业关键字:中央空调、水源热泵、互联网机组、空调机组、物联网、末端用户
技术关键字:可靠性、节能、环境潮湿、通讯、三相电采集
资料提供:本文涉及方案已在用户现场实施,技术方案先进,运行稳定。欢迎联系蓝普锋深入探讨、交流。
一、行业背景
随着居民生活水平的提高,空调已经成为生活的必需品,其中大型商用中央空调(如大型水源热泵)已经成为各大型住宅、商场、宾馆、办公楼、学校等建筑物必备的基础配套设施。由于建筑物体量逐渐趋于庞大,水源热泵机组系统规模也在逐年增大,设备的管理、维护和运营调度也越来越复杂,而且系统的能耗也在不断上升。
水源热泵机组是利用地球表面浅层的水源,采用热泵原理,在夏季将建筑物内的热量通过机组转移到水源中;在冬季则从相对恒定温度的水源中提取热能,通过机组将空气或水作为媒介,提升温度后送到建筑物中。通过建筑物中风道或者冷热水管道连接多个末端设备,将水源热泵机组产生的冷热源送至建筑物中各个区域。
水源热泵监控系统主要包括两个方面的内容:一个是基于PLC控制的水源热泵机组,例如通过PLC采集热泵机组的供回水温度、压力,水泵、风机和压缩机的运行状态、电压、电流和电量等,控制水泵、风机、压缩机工作状态;另一个是对系统运行进行管理调度的系统,例如采集末端用户室内温湿度、末端风机运行状态等数据,计算分析后用于调整热泵机组和末端设备运行参数。
水源热泵机组的冷热源相对稳定,冬季机组不会结霜,供热效果好,而且系统运行稳定可靠、制热效率高。但是,水源热泵机组空调系统大部分仍是有人值守,系统不能远程维护、管理,也不能依据末端室内温湿度情况,合理的调节机组运行状态。随着自动控制技术和物联网技术的发展,水源热泵监控系统设备管理运维智能化、物联网化成为主要发展方向。
二、系统方案简介
某项目现场是由1栋办公楼和2栋宿舍楼组成,采用水源热泵机组进行供暖和制冷,供热末端为暖气片,制冷末端为风机盘管。空调机组为涡旋式六压机水源热泵机组,单台空调机组最大容量可以达到1400kW,井水泵和回水泵各2台,循环泵2台。机组供暖时,要求办公楼和宿舍楼内室温达到20℃以上;机组制冷时,要求办公室和宿舍楼内室温低于25℃。
2.1 系统方案设计
选择蓝普锋PLC可编程控制器产品控制水源热泵机组,通过触摸屏进行人机界面显示。蓝普锋PLC广泛应用于水源热泵、地源热泵、空气源热泵、污水源热泵、吸收式热泵等,PLC控制工艺成熟稳定且具备成套现场解决方案,集成智能控制算法和节能算法,并可以通过编程灵活调整,满足不同现场需求。PLC本体自带多路通讯接口,方便进行联网通讯。
控制解决方案设计如下:
(1)信号输入输出:通过输入点(源型漏型均支持,接线方便)采集机组设备运行状态,如水泵、压缩机、水温、压力等;通过继电器输出控制机组设备启停;通过模拟量通道(差分隔离模拟量输入,采集精度0.5%)采集吸排气压力,计算过热度;通过热电阻采集通道采集冷却进出水、冷冻进出水等水温,用于制冷制热运行过程判断;
(2)空调机组一般放置于地下室,且现场环境潮湿,对PLC产品要求苛刻,PLC产品必须长时间稳定可靠。选用蓝普锋PLC经过三防处理后,可以长时间稳定可靠运行;
(3)空调机组三相电故障判断一般是通过相序保护器对缺相、过压等进行判断,PLC通过输入采集无源干接点故障信号,为了防止干扰信号,一般会加100ms以上的程序判断延时。三相电量一般是通过三相电表进行记录,PLC通过RS485通讯读取累计电量。
选用蓝普锋RPC2731三相电参数采集扩展模块,可以直接采集机组工作电压、电流、电量等参数,对供电回路进行监视和保护,实时保护压缩机、水泵,从采集判断到执行保护动作周期小于20ms;同时可以记录三相累计电量,实现保护和采集,降低设备成本;
(4)PLC通过RS232接口连接触摸屏,显示机组运行状态;PLC通过以太网接口(Modbus TCP协议),连接至办公楼内中心服务器,进行数据上传、存储、分析、决策;蓝普锋PLC本体自带3路串口,1路网口,方便进行联网;
(5) 办公楼和宿舍楼内房间内均安装无线低功耗温湿度传感器(电池供电,可以工作三年),无线采集器采集多个范围内温湿度传感器,通过GPRS DTU连接至服务器,进行数据上传存储,经过分析,结合室外温湿度数据,对房间温度进行智能调节;
(6)上位机服务器通过无线和有线通信,采集机组状态和室内外环境参数,进行综合分析、调度。服务器可以通过PC端实时显示机组运行状态,通过WEB发布方式,实现网页和手机端数据浏览,方便运营维护人员查看现场数据。
图1 系统结构示意图
2.2 方案系统选型
PLC选型如下表所示:
2.3 系统控制策略
机组运行控制策略如下:
(1)制冷模式开关机控制
1)手动开关机:通过按下启动、停止按钮向控制器发出开关机信号;
2)定时开关机:先设定时间,机组到达设定时间后,自动向控制器发出开关机信号;
3)远程开关机:通过控制器预留开关量输入接点,实现开关机。
制冷开机过程:开机指令→空调水泵开启→延时1min【可设】,开启井水泵→检测冷冻水及冷却水水流开关→检测冷冻水出水温度(冷冻水出水温度≥冷冻出水设定温度+2),满足开机条件后,而且无其他故障保护,关闭四通阀,开启第一台压缩机→延时1min【可设】执行加卸载程序(根据制冷设定温度与冷冻水出水温度差值调节压缩机运行个数),开启后续压缩机→开机结束;
制冷关机过程:关机指令→延时1min【可设】执行卸载程序依次关闭压缩机,压缩机全部关闭后→关闭四通阀→延时3min【可设】执行关闭井水泵和空调水泵程序→关机结束。
(2)制热模式开机控制
1)手动开关机:通过按下启动、停止按钮向控制器发出开关机信号;
2)定时开关机:先设定时间,机组到达设定时间后,自动向控制器发出开关机信号;
3)远程开关机:通过控制器预留开关量输入接点,实现开关机。
制热开机过程:开机指令→冷冻水泵开启→延时1min【可设】,开启冷却水泵→检测冷冻水及冷却水水流开关→检测冷却水出水温度(冷却水出水温度≤冷却出水设定温度-2),满足开机条件后,而且无其他故障保护,打开四通阀,开启第一台压缩机→延时1min【可设】执行加卸载程序(根据制热设定温度与冷却水出水温度差值调节压缩机运行个数),开启后续压缩机→开机结束;
制热关机过程:关机指令→延时1min【可设】执行卸载程序依次关闭压缩机,压缩机全部关闭后→关闭四通阀→延时3min【可设】执行关闭井水泵和空调水泵程序→关机结束。
(3)水温加卸载控制
1)制冷模式加卸载控制
加卸载控制采用模糊控制原则,根据冷冻出水温度与冷冻设定温度进行比较,温度检测周期为3分钟【可设】,按照温差区域分布进行调节,可以分为:加载、保持、卸载、待机;
当前时刻减上一时刻 | 正值 | 负值 | |
冷冻水出水>=冷冻水设定温度+1 | 加载 | 保持 | |
冷冻水设定温度-1<冷冻水出水<冷冻水设定温度+1 | 保持 | 保持 | |
冷冻水出水<=冷冻水设定温度-1 | 保持 | 减载 | |
冷冻水出水<冷冻水设定温度-2 | 待机 | 待机 |
2)制热模式加卸载控制
加卸载控制采用模糊控制原则,根据冷却出水温度与冷却出水设定温度进行比较,温度检测周期为3分钟【可设】,按照温差区域分布进行调节,可以分为:加载、保持、卸载、待机;
当前时刻减上一时刻值 | 正值 | 负值 | |
冷却水出水<=冷却水设定温度-1 | 保持 | 加载 | |
冷却水设定温度-1<冷却水出水<冷却水设定温度+1 | 保持 | 保持 | |
冷却水出水≥冷却水设定温度+1 | 减载 | 保持 | |
冷却水出水>冷却水设定温度+2 | 待机 | 待机 |
(4)电参数采集和保护控制
RPC2731采集系统工作三相电参数,可以直接采集3路单相0~300V电压,3路单相0~5A电流(超过5A需增加互感器)。PLC可以根据压缩机运行个数,判断电流是否超过最大值,存在过载、短路等故障;根据三相电压是否超过设定值,判断是否存在过压、缺相、低压等故障,对系统设备进行保护;直接记录上传机组能耗。
(5)系统调度和末端数据采集控制
上位机服务器通过无线通信方式采集末端房间内温湿度和室外环境温湿度,经过智能计算分析后,对机组运行目标温度和工作模式进行调节,降低机组运行能耗。通过WEB发布的方式,管理人员可以进行远程网页浏览系统运行数据,也可以通过手机APP远程查看,并可以通过账号密码验证后,远程调节机组运行参数,对机组进行远程故障判断维护。
三、现场PLC图片
图2 现场PLC控制柜图
四、典型现场
(1)海淀区政府办公楼
(2)新乡平原新区政府办公楼
(3)石家庄某典型示范小区